New critical denial of service vulnerability
in the SQLCipher SQL command processing
(CVE-2020-27207)
by Robert HOrr (e-mail: robert.hoerr@t-systems.com)
(Penetration Tester of the Deutsche Telekom Security GmbH)

A new critical denial of service vulnerability (Use CVE-2020-27207) in the SQLCipher
SQL command processing of the master branch (https://github.com/sqlcipher) was
discovered with a self-developed SQLCipher-FAST (Fast Automated Software
Testing) framework. The versions 4.x.x include the vulnerability, too. The vulnerability
forces the database application to read some unexpected RAM data, which leads to
an undefined database behavior. The vulnerability was fixed in the version 4.4.1.

What is the SQLCipher library?

The company Zetetic provides several security frameworks. One of them is the open
source SQLCipher library. It is an extension for the open source SQLite database
providing complete database encryption. Several companies like Samsung,
Motorola and SAP are using this library. According to Zetetic, "SQLCipher is widely
used, protecting data for thousands of apps on hundreds of millions of devices|...] ."
(https://www.zetetic.net/sqlcipher/)

How is the SQLCipher library tested?

The code size of SQLite and SQLCipher library is roughly 250,000 lines of code. It is
hardly possible to check all code paths by a manual source code review. Hence,
dynamic automated machine testing must be performed. An efficient way to perform
this kind of testing is the code coverage fuzzing approach. For that, the SQLCipher-
FAST framework was developed. This framework unites the strengths of several
fuzzing tools and detects issues like buffer overflows.

Which issue was discovered?

The SQLCipher-FAST framework detects several issues in the SQL command
processing. One of the issues is a heap-use-after-free. This issue occurs if the
following specially crafted SQL command sequence is executed in the API function
sqlite3_exec(...):

00000000: 5052 4147 4d41 2063 €970 €865 725f €465 PRAGMA cipher de
00000010: €66l Thec 745f T706c €169 6eT74 6578 T745f fault plaintext
00000020: ©865 eled €572 5£73 €97a €520 0000 €170 header size ..ap
00000030: 001z 1300 3d20 303b 220z Z06b 6579 2043 .= 0;". key C
00000040: 2024 &8&65 78eb 8579 7370 563 3bla 2020 Shexkeyspec:.
00000050: 2020 5052 4147 4d41 2063 6970 €865 T2Z5L PRAGMA cipher
000000€0: T06c ©1e9 ee74 ©578 T45f €865 €led €572 plaintext header
00000070: 5£f73 697a 6520 3d20 3332 3bla 2020 2020 _size = 32
00000080: 7052 4147 4441 206a 6f75 TZ6e &lec bfed pRAGMA journal m
000000%90: 6f64 &653b 0a20 2020 5241 4700 0000 0000 ode BAG.....
00000020: 0000 0000 0000 0000 0000 COO000 0000 0000 @ weviveinrinnnnnnas
000000k0O: 0000 0000 0000 0000 0000 Q000 0000 0000 @ ..viwevinnnnnnan
000000c0O: 0000 0000 0000 0000 0000 0000 0000 0000 @ .weviveinrnnnnnnas

https://github.com/sqlcipher
https://www.zetetic.net/sqlcipher/

This sequence includes the string "cipher_default_plaintext_header_size" which is
processed in the following source code parts of the file sqlite3.c:

function: sqlcipher_codec pragma (...) {
if(sqlite3StriCmp(zLeft,")==0) {
if(zRight) {
sqlcipher_set_default_plaintext_header_size(atoi(zRight));
} else {
char *size =
sqlite3_mprintf("%d", sqlcipher_get_default_plaintext_header_size());
codec_vdbe_return_string(pParse, "cipher_default_plaintext_header_size",
size, P4_DYNAMIC);
sqlite3_free(size);

Vb

function: sqlite3Strlen30(const char *z) {
if(z==0) return O;
return Ox3fffffff & (int)strlen(z);

The pointer size gets an address of a dynamically allocated memory area. In the
function codec_vdbe_return_string(...) the pointer size is copied and the pointer size is
freed by the function execution sqlite3_free(size). Later the address of the copied
pointer is read in the function strlen(z) of the function sqlite3Strlen30(...) which leads
to an undefined database behavior. At the end of the program the function
freeP4(...) frees the copied pointer.

How is the discovered issue exploitable?

Exploiting this issue can result in a remote denial of service attack. For example, a
SQL injection can be used to execute the specially crafted SQL command sequence.
After that, some unexpected RAM data is read that leads to an undefined database
behavior.

